628 research outputs found

    TARGETED NANOMEDICINES FOR APPLICATIONS IN PRECLINICAL CANCER MODELS

    Get PDF

    a review of vasculogenesis models

    Get PDF
    Mechanical and chemical models of vasculogenesis are critically reviewed with an emphasis on their ability to predict experimentally measured quantities. Final remarks suggest a possibility to merge the capabilities of different models into a unified approach

    MicroRNA-mediated regulatory circuits: outlook and perspectives

    Get PDF
    MicroRNAs have been found to be necessary for regulating genes implicated in almost all signaling pathways, and consequently their dysfunction influences many diseases, including cancer. Understanding of the complexity of the microRNA-mediated regulatory network has grown in terms of size, connectivity and dynamics with the development of computational and, more recently, experimental high-throughput approaches for microRNA target identification. Newly developed studies on recurrent microRNA-mediated circuits in regulatory networks, also known as network motifs, have substantially contributed to addressing this complexity, and therefore to helping understand the ways by which microRNAs achieve their regulatory role. This review provides a summarizing view of the state-of-the-art, and perspectives of research efforts on microRNA-mediated regulatory motifs. In this review, we discuss the topological properties characterizing different types of circuits, and the regulatory features theoretically enabled by such properties, with a special emphasis on examples of circuits typifying their biological significance in experimentally validated contexts. Finally, we will consider possible future developments, in particular regarding microRNA-mediated circuits involving long non-coding RNAs and epigenetic regulators

    Stable interaction between α5β1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1

    Get PDF
    During angiogenic remodeling, Ang-1, the ligand of Tie2 tyrosine kinase, is involved in vessel sprouting and stabilization through unclear effects on nascent capillaries and mural cells. In our study, we hypothesized that the Ang-1/Tie2 system could crosstalk with integrins, and be influenced by the dynamic interactions between extracellular matrix and endothelial cells (ECs). Here, we show that α5β1 specifically sensitizes and modulates Tie2 receptor activation and signaling, allowing EC survival at low concentrations of Ang-1 and inducing persistent EC motility. Tie2 and α5β1 interact constitutively; α5β1 binding to fibronectin increases this association, whereas Ang-1 stimulation recruits p85 and FAK to this complex. Furthermore, we demonstrate that Ang-1 is able to mediate selectively α5β1 outside-in FAK phosphorylation. Thus, Ang-1 triggers signaling pathways through Tie2 and α5β1 receptors that could crosstalk when Tie2/α5β1 interaction occurs in ECs plated on fibronectin. By using blocking antibodies, we consistently found that α5β1, but not αvβ3 activation, is essential to Ang-1-dependent angiogenesis in vivo. © The Rockefeller University Press

    Interactions between endothelial cells and HIV-1.

    Get PDF
    Endothelial cells (EC) participate in inflammatory and immune reactions by producing and responding to soluble mediators. Human immunodeficiency virus (HIV)-1 profoundly alters the features of EC. In some anatomical districts, they are infected by the virus and may represent a relevant reservoir. During lymphomononuclear cell diapedesis, EC activate virus replication in crossing cells. Direct or indirect damage of EC is particularly relevant in central nervous system, where blood-brain barrier perturbation is pivotal in neuronal degeneration. The observed alterations of EC adhesive properties contribute in altered leukocyte traffic from blood to lymphoid organs and tissues and play a role in the onset of immune surveillance alteration. These alterations of EC functions are relevant for the general vasculopathy, which marks the acquired immunodeficiency syndrome, and in particular are instrumental in the pathogenesis of Kaposi's sarcoma. Here we discuss the biological and molecular activation of EC in HIV-1 infection that represents the basis to understand the pathogenesis of HIV-1 associated vascular diseases

    Integrins: A flexible platform for endothelial vascular tyrosine kinase receptors.

    Get PDF
    Compared to lower metazoans, vertebrates built up an exclusively new set of adhesion-related genes involved in the tissue development and in their functions. They include a large variety of extracellular matrix proteins and their heterodimeric integrin adhesive receptors. Integrins control the adhesive state of the cell through complex molecular mechanisms. Outside-in signalling informs the cell about the extracellular matrix environment, while Inside-out signalling results in changes in integrin functional activity. In the last 10 years it has well established a reciprocal integration of signals originating from integrins and receptors for soluble growth factors. This review summarizes the current understanding of this connection in vascular endothelial cells and highlights how integrins regulate a genetic program triggered by angiogenic inducers during embryo development and in adult life
    • …
    corecore